Even Eminent Scientists can get dementia

Even Eminent Scientists can get dementia

(PhysOrg.com) — Eminent Australian scientist Professor Frank Fenner, who helped to wipe out smallpox, predicts humans will probably be extinct within 100 years, because of overpopulation, environmental destruction and climate change.Fenner, who is emeritus professor of microbiology at the Australian National University (ANU) in Canberra, said homo sapiens will not be able to survive the population explosion and “unbridled consumption,” and will become extinct, perhaps within a century, along with many other species. United Nations official figures from last year estimate the human population is 6.8 billion, and is predicted to pass seven billion next year.Fenner told The Australian he tries not to express his pessimism because people are trying to do something, but keep putting it off. He said he believes the situation is irreversible, and it is too late because the effects we have had on Earth since industrialization (a period now known to scientists unofficially as the Anthropocene) rivals any effects of ice ages or comet impacts.

Humans will be extinct in 100 years says eminent scientist

Although i do agree homo sapiens is due for extinction being an error of evolution (99% of lifeforms went extinct over time) his reasons why are patently ridiculous as is the timeframe.

ALZHEIMER’S DISEASE

ALZHEIMER’S DISEASE

Amyloid-β (Aβ) peptide has been implicated in the pathogenesis of Alzheimer’s disease (AD). We present a nonpharmacological approach for removing Aβ and restoring memory function in a mouse model of AD in which Aβ is deposited in the brain. We used repeated scanning ultrasound (SUS) treatments of the mouse brain to remove Aβ, without the need for any additional therapeutic agent such as anti-Aβ antibody. Spinning disk confocal microscopy and high-resolution three-dimensional reconstruction revealed extensive internalization of Aβ into the lysosomes of activated microglia in mouse brains subjected to SUS, with no concomitant increase observed in the number of microglia. Plaque burden was reduced in SUS-treated AD mice compared to sham-treated animals, and cleared plaques were observed in 75% of SUS-treated mice. Treated AD mice also displayed improved performance on three memory tasks: the Y-maze, the novel object recognition test, and the active place avoidance task. Our findings suggest that repeated SUS is useful for removing Aβ in the mouse brain without causing overt damage, and should be explored further as a noninvasive method with therapeutic potential in AD.

 

Whole Food Diet Linked To Greater Cognitive Dysfunction In Alzheimer’s

Whole Food Diet Linked To Greater Cognitive Dysfunction In Alzheimer’s

In  short: There is no such thing as ‘healthy’ food….

Abstract
Food combinations have been associated with lower incidence of Alzheimer’s disease. We hypothesized that a combination whole-food diet containing freeze-dried fish, vegetables, and fruits would improve cognitive function in TgCRND8 mice by modulating brain insulin signaling and neuroinflammation. Cognitive function was assessed by a comprehensive battery of tasks adapted to the Morris water maze. Unexpectedly, a “Diet × Transgene” interaction was observed in which transgenic animals fed the whole-food diet exhibited even worse cognitive function than their transgenic counterparts fed the control diet on tests of spatial memory (p < 0.01) and strategic rule learning (p = 0.034). These behavioral deficits coincided with higher hippocampal gene expression of tumor necrosis factor-α (p = 0.013). There were no differences in cortical amyloid-β peptide species according to diet. These results indicate that a dietary profile identified from epidemiologic studies exacerbated cognitive dysfunction and neuroinflammation in a mouse model of familial Alzheimer’s disease. We suggest that normally adaptive cellular responses to dietary phytochemicals were impaired by amyloid-beta deposition leading to increased oxidative stress, neuroinflammation, and behavioral deficits.

Full Paper

How the anatomical structure of the brain impacts its functional networks?


Today I want to offer an interesting paper by Andreas et al (2013) that sought to determine how the anatomical structure of the brain impacts its functional networks. I think that their interesting findings (see abstract below) may contribute to a better understanding of brain functioning in healthy people and people with neurodegenerative disorders such as Alzheimer’s disease and psychiatric disorders such as schizophrenia and bipolar disorder. Enjoy!

How the anatomical structure of the brain impacts its functional networks?.